SYNTHESIS OF NANOTUBES IN THE LIQUID PHASE

Schur D.V.*, Dubovoy A.G., Lysenko E.A., Golovchenko T.N., Zaginaichenko S.Yu., Savenko A.F., Adeev V.M., Kaverina S.N.

Institute for Problems of Materials Science of NAS of Ukraine, lab. # 67, 3, Krzhizhanovsky str., Kiev, 03142 Ukraine

Introduction

In connection with the discovery of fullerenes, the work performed to produce fine metal powders, began in 80th of the last century by A.G.Dubov et al. [1-2], has an original continuation.

In the first work it was supposed that the fine particles resulted from the arc metal sputtering might change their properties depending on the synthesis conditions.

In their work [3-23] authors sum up investigations performed for ten years in Institute for physics of metals of National Academy of Sciences of Ukraine. It was noted that the arc parameters and the nature of the medium for synthesis affected the structure and properties of particles. Changing conditions for synthesis, one can change in the wide range properties of the product.

The work presented seeks to verify the hypothesis for possibility of carbon nanotube synthesis in the liquid medium which is a source for carbon.

Experiment

The technique of electric-spark metal sputtering (ESS) mentioned above has been used to verify this hypothesis. The original appararus designed in laboratory 67 in Institute for Problems of Material Science of National Academy of Sciences of Ukraine has been used

According to [4], the main positive moments of the method used are:

- 1. High temperature in the arc zone ~4000 °C.
- 2. High cooling rate of sputtered products 10^9 - 10^{14} °C/c.
- 3. High dispersion level. The size of the particles produced is 1-100 nm.
- 4. High rate of nucleation at the low rate of the particle growth.

All these conditions are in a good agreement with conditions for synthesis of fullerenes and nanotubes by the arc graphite sputtering. Experiments have been performed in C_2H_5OH , benzene, toluene and hexane.

The reaction products have been analyzed using scanning and transmission microscopes.

Results and discussion

As authors supposed proceeding from the generally accepted concepts of mechanisms of the carbon nanotube growth, the dispersed nickel sputtered must catalyze the growth of these nanotubes. The source for carbon should be carbon from the hydrocarbon that transforms into the vaporous state in the arc zone. It was supposed to prepare single-wall nanotubes on the nickel

particles 1-10 nm in size, and the layer of nanotubes up to 1 μ m thick on the larger nickel particles.

Electron-microscopic studies have indicated that carbon nanotubes did not form on the nickel particles in the media chosen (Fig.1, a,b - alkohol, c,d,e,f - toluene, g,h - hexane).

However, when hydrocarbons mixed, carbon nanotubes up to 100 nm in diameter form on the surface of nickel microparticles. Nanotubes are not perpendicular to the surface (as after pyrolysis), but they are parallel to it. Tubes on the surface of particles form the continuous net (Fig.2,3).

In these conditions the carbon core sputtering has resulted in the solution which resemble fullerene extracts by color. We have failed to extract fullerenes from the mixture prepared chromatographically.

Conclusions

All the results obtained are of scientific and practical interest. The materials prepared require further investigations. The method proposed may be one of the most effective method to synthesize fullerenes and nanotubes.

References

- Schur DV, Zaginaichenko S Yu, Adejev VM, Voitovich VB, Lyashenko AA, Trefilov VI; Phase transformations in titanium hydrides, International journal of hydrogen energy, 21,11,1121-1124,1996, Pergamon
- Schur DV, Tarasov BP, Zaginaichenko S Yu, Pishuk VK, Veziroglu TN, Shul'ga Yu M, Dubovoi AG, Anikina NS, Pomytkin AP, Zolotarenko AD; The prospects for using of carbon nanomaterials as hydrogen storage systems, International journal of hydrogen energy, 27, 10, 1063-1069, 2002, Pergamon
- 3. Tarasov BP, Shul'ga Yu M, Fokin VN, Vasilets VN, Shul'ga N Yu, Schur DV, Yartys VA; Deuterofullerene C 60 D 24 studied by XRD, IR and XPS,Journal of alloys and compounds, 314,1,296-300,2001,Elsevier
- Tarasov BP, Fokin VN, Moravsky AP, Shul'ga Yu M, Yartys VA, Schur DV; Promotion of fullerene hydride synthesis by intermetallic compounds, Hydrogen energy progress, 2, 1221-1230,1998,
- 5. Schur DV, Zaginaichenko S Yu, Matysina ZA, Smityukh I, Pishuk VK; Hydrogen in lanthannickel storage alloys, Journal of alloys and compounds, 330, 70-75, 2002, Elsevier
- 6. Matysina ZA, Schur DV; Hydrogen and solid phase transformations in metals, alloys and fullerites,

٠

^{*} Fax: (38) 044 424-0381; E-mail: shurzag@materials.kiev.ua

- Dnepropetrovsk: Nauka i obrazovanie, 420p (in Russian),2002,
- Matysina ZA, Pogorelova OS, Zaginaichenko S Yu, Schur DV; The surface energy of crystalline CuZn and FeAl alloys, Journal of Physics and Chemistry of Solids, 56, 1,9-14, 1995, Elsevier
- Schur DV, Lavrenko VA, Adejev VM, Kirjakova IE; Studies of the hydride formation mechanism in metals, International journal of hydrogen energy, 19,3,265-268, 1994, Elsevier
- Schur DV, Matysina ZA, Zaginaichenko S Yu; Theoretical study of interstitial atoms distribution in the bulk and at the surface of crystal. Surface segregation, Journal of alloys and compounds, 330,81-84,2002, Elsevier
- 10. Shul'ga Yu M, Martynenko VM, Tarasov BP, Fokin VN, Rubtsov VI, Shul'ga N Yu, Krasochka GA, Chapysheva NV, Shevchenko VV, Schur DV; On the thermal decomposition of the C60D19 deuterium fullerite, Physics of the Solid State, 44,3,545-547,2002, Nauka/Interperiodica
- Schur DV, Matysina ZA, Zaginaichenko S Yu; Study of physico-chemical processes on catalyst in the course of synthesis of carbon nanomaterials, Hydrogen Materials Science and Chemistry of Metal Hydrides: Proceedings of the NATO Advanced Research Workshop on. Alushta Crimea, Ukraine, 16-22 September 2001,235,2002, Kluwer Academic Pub
- Schur DV, Tarasov BP, Shul'ga Yu M, Zaginaichenko S Yu, Matysina ZA; Research of Fullerites Hydrogen Capacity, Hydrogen Materials Science and Chemistry of Metal Hydrides: Proceedings of the NATO Advanced Research Workshop on. Alushta Crimea, Ukraine, 16-22 September 2001, 1, 2002, Kluwer Academic Pub
- Matysina ZA, Zaginaichenko S Yu, Schur DV, Pishuk VK; Theoretical investigation of isopleths of hydrogen solubility in transition metals, Journal of alloys and compounds, 330,85-88,2002, Elsevier
- Trefilov VI, Schur DV, Pishuk VK, Zaginaichenko S Yu, Choba AV, Nagornaya NR; The solar furnaces for scientific and technological investigation, Renewable energy, 16,1,757-760, 1999, Elsevier
- 15. Трефилов ВИ, Щур ДВ, Загинайченко СЮ; Фуллерены-основа материалов будущего, 2001, Laboratory 67
- 16. Schur Dmitry V, Zaginaichenko Svetlana Yu, Veziroğlu T Nejat, Javadov NF; The Peculiarities of Hydrogenation of Fullerene Molecules C60 and Their Transformation, Black Sea Energy Resource Development and Hydrogen Energy Problems,191-204,2013, Springer Netherlands
- 17. Schur DV, Dubovoi AG, Anikina NS, Zaginaichenko S Yu, Dobrovol'skij VD, Pishuk VK, Tarasov BP, Shul'ga Yu M, Meleshevich KA, Pomytkin AP; The production of utrafine powders of fullerites by the salting out method, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Alushta-Cremia-Ukraine, September, 16-22, 2001,

- Kharlamov AI, Loytchenko SV, Kirillova NV, Kaverina SN, Vasilev AD, Fomenko VV, Zolotarenko AD, Kazimirov VP; Tubular and filamentous nanostructures of hexagonal silicon carbide, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, 572-574,2001,
- Slys IG, Berezanskaya VI, Schur DV, Zaginaychenko SYu, Rogozinskaya AA, Adejev VM, Zolotarenko AD; Making the point metal coatings on the particles of hydride-forming intermetallides, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, 404-405, 2001,
- Muratov VB, Meleshevich KA, Bolgar AS, Zolotarenko AD; Application of dynamic c-calorimetry method for investigation of enthalpy at hydride dissociation, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, 342-343, 2001,
- Anikina NS, Schur DV, Simanovskiy AP, Zolotarenko AD, Dubovoy AG, Ivanchenko NV; Problem on fullerene production by electric arc method, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, 590-591, 2001,
- Pishuk VK, Schur DV, Bogolepov VA, Savenko AF, Zaginaichenko SYu, Zolotarenko AD, Mar'yanchuk IV, Prikhod'ko AB; Problem on production of highly dispersed extra pure powders, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, 586-587, 2001,
- Lavriv LV, Anikina NS, Simanovskij AP, Zolotarenko AD, Schur DV; Features of fullerene extraction with toluene, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, 596, 2001

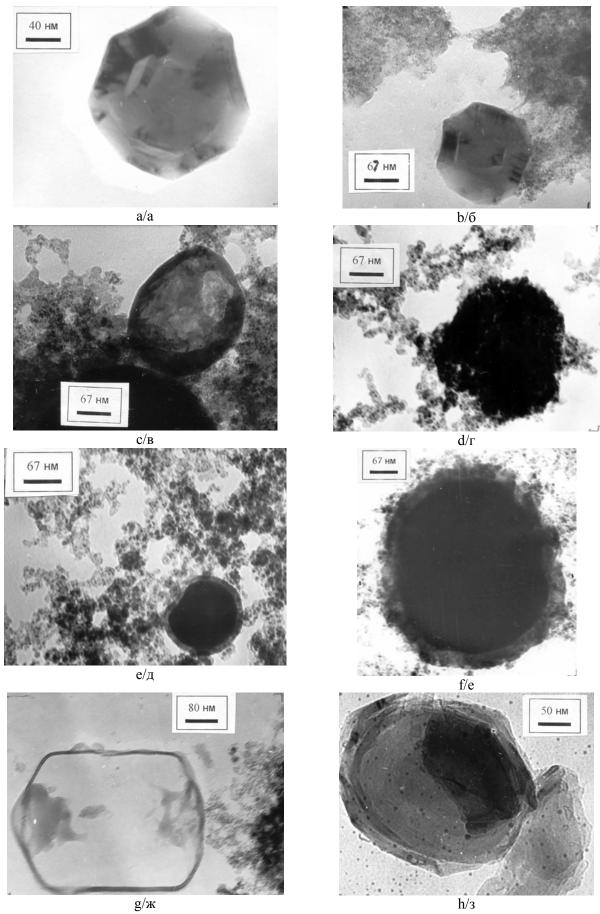
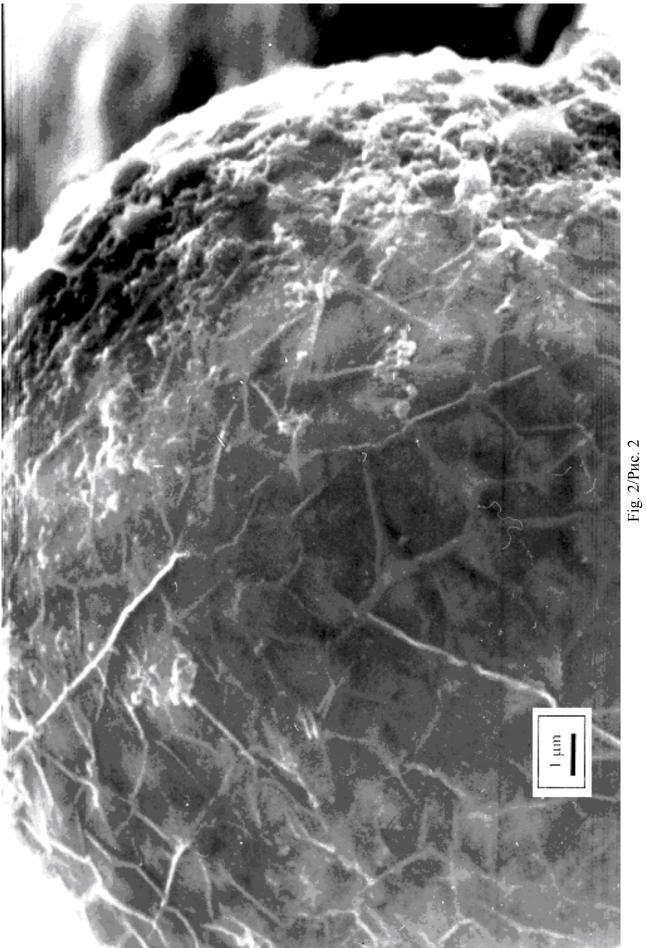



Fig. 1/Рис. 1.

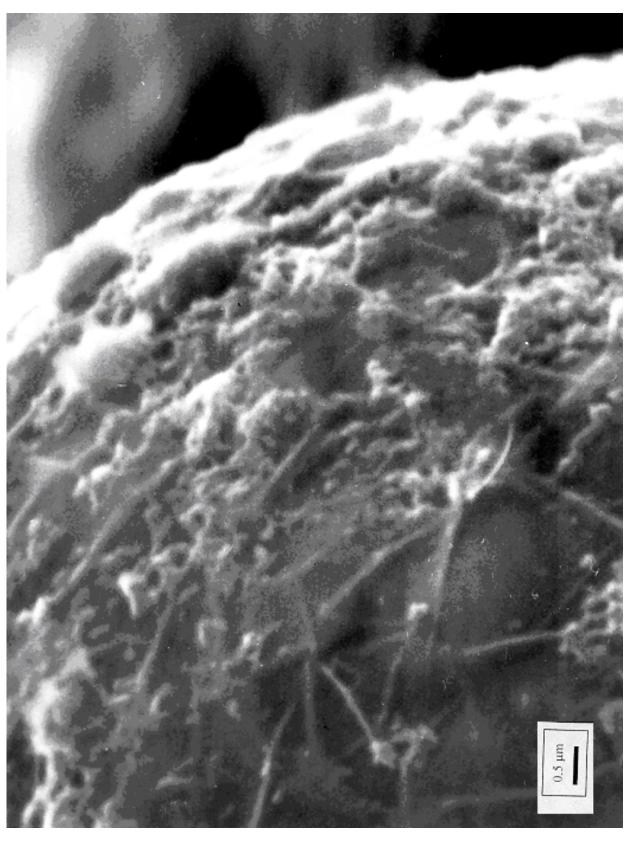


Fig. 3/Рис. 3