INVESTIGATIONS INTO CATALYTIC ACTIVITY OF LaNis IN SYNTHESIS OF CARBON NANOTUBES

Schur D.V., Dubovov A.G., Savenko A.F., Bogolepov V.A., Koval A.Yu., Zaginaichenko S.Yu., Lysenko E.A.*

Institute for Problems of Materials Science of NAS of Ukraine, lab. #67, 3, Krzhizhanovsky str., Kiev, 03142 Ukraine

Introduction⁻

Numerous methods of synthesis allows preparation of carbon nanotubes (CNT) of different purity and, consequently, with different properties. In particular, this is also related to their sorption properties. Data of different authors on CNT hydrogen capacity may differ by an order due to different conditions for synthesis. Conditions for sorption and hydrogen capacity especially depend on the state of hydrogen (at equal other conditions).

CNT saturation with activated hydrogen occurs under milder conditions.

Any of the hydride-forming metals or alloys may be used for hydrogen activation when its sorptiondesorption thermodynamics satisfies the certain conditions.

However, reversible sorption capacity and chemical activity of all the hydride-forming materials greatly depend on the state of their surface. Electronegative impurities (O,N etc.) present on the surface result in deterioration in kinetics of hydrogen sorption. Penetration of impurities into the particle bulk decreases its capacity and leads to its decrepitation.

When particles of hydride-forming metal were covered with protective layers, sorption kinetics and other operating characteristics were deteriorated.

This work is aimed to verify the hypothesis on creation of the hydrogen penetrable, hydrogen-sorbing protective layer of nanostructural carbon on the surface of the hydride-forming particle.

Nanostructural carbon is supposed to be a barrier against electronegative impurities. Dynamic equilibrium of hydrogen sorption-desorption processes will allow the metal particle to be donor of activated hydrogen for nanostructural carbon.

Experimental

LaNi₅ (MmNi₅) intermetallide of AB₅ type was used as a metal hydride-froming component.

We have attempted to grow nanotubes on the intermetallide surface by two methods:

- 1. Catalytic pyrolysis of acetylene.
- 2. Electro-erosion sputtering of the alloy of AB₅ type in liquid hydrocarbon.

In the first case intermetallide was mixed with catalyst **CNT** for synthesis Ni/Cu (98 wt.%/2 wt.%). The mixtures were prepared beginning from the proportion NiCu:LaNi₅ = 1:1. The concentration of LaNi₅ fraction was gradually increased by mixing in the ball mill in hydrogen at P=0.5 MPa.

Fax: (38)044 424-0381;

E-mail: shurzag@materials.kiev.ua

Catalytic activity of the mixtures prepared has been investigated in regard to the CNT growth. The mixtures passed through the furnace for catalytic pyrolysis (the apparatus was designed in laboratory 67 in Institute for Problems of Material Science of National Academy of Sciences of Ukraine).

The electric sparc erosion apparatus was used in the second case. (The apparatus was also designed in laboratory 67 in Institute for Problems of Material Science of National Academy of Sciences of Ukraine). Hydrocarbons and their mixtures were used as sources of carbon.

Results and discussion

In the first case, in hydrocarbon pyrolysis, CNTs grow on all the mixtures up to the proportion NiCu:LaNi₅=2:98. At this proportion CNTs do not form on pure LaNi₅. Therefore, in spite of the fact that intermetallide contains a high amount of nickel, which is catalyst for CNTs growth, CNTs do not form in these experimental conditions.

In the second case, during electric arc LaNi₅ sputtering in the hydrocarbon medium, different carbonhydrocarbon layers form on the surface of particles. CNTs (Fig.1), similar to those produced by this methos on pure nickel [1], have been found only on the particles prepared in solvent-2355.

Conclusions

In catalytic pyrolysis of hydrocarbons in the range from 800 to 1200 °C, LaNi₅ is not catalyst of the CNTs growth at the given experimental conditions.

However, during electric erosion sputtering of this alloy in hydrocarbons (of certain composition), CNTs may grow on the surface of LaNi₅ particles formed.

We can agree with this conclusion if we do not take into consideration the fact that intermetallide might be separated into components in the electric arc, and CNTs might grow on the particles enriched in nickel like in [1-23].

References

- Schur DV, Zaginaichenko S Yu, Adejev VM, Voitovich VB, Lyashenko AA, Trefilov VI; Phase transformations in titanium hydrides, International journal of hydrogen energy, 21,11,1121-1124,1996, Pergamon
- Schur DV, Tarasov BP, Zaginaichenko S Yu, Pishuk VK, Veziroglu TN, Shul'ga Yu M, Dubovoi AG, Anikina NS, Pomytkin AP, Zolotarenko AD; The prospects for using of carbon nanomaterials as hydrogen storage systems, International journal of hydrogen energy,27,10,1063-1069,2002,Pergamon

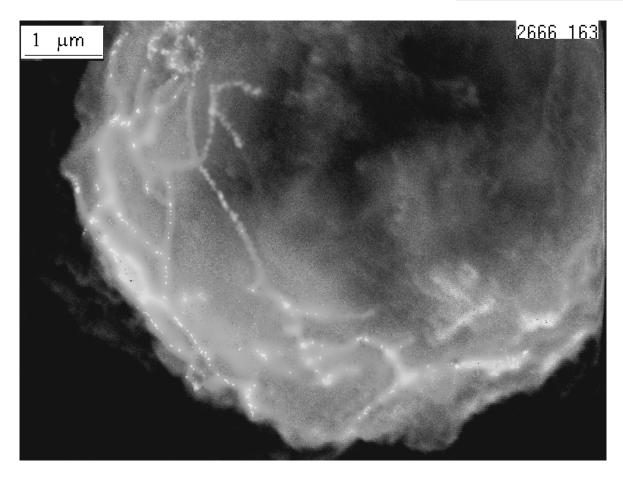


Fig. 1.

- 3. Tarasov BP, Shul'ga Yu M, Fokin VN, Vasilets VN, Shul'ga N Yu, Schur DV, Yartys VA; Deuterofullerene C 60 D 24 studied by XRD, IR and XPS, Journal of alloys and compounds, 314,1,296-300,2001. Elsevier
- 4. Tarasov BP, Fokin VN, Moravsky AP, Shul'ga Yu M, Yartys VA, Schur DV; Promotion of fullerene hydride synthesis by intermetallic compounds, Hydrogen energy progress, 2, 1221-1230,1998,
- 5. Schur DV, Zaginaichenko S Yu, Matysina ZA, Smityukh I, Pishuk VK; Hydrogen in lanthannickel storage alloys, Journal of alloys and compounds, 330,70-75,2002. Elsevier
- 6. Matysina ZA, Schur DV; Hydrogen and solid phase transformations in metals, alloys and fullerites, Dnepropetrovsk: Nauka i obrazovanie, 420p (in Russian),2002,
- Matysina ZA, Pogorelova OS, Zaginaichenko S Yu, Schur DV; The surface energy of crystalline CuZn and FeAl alloys, Journal of Physics and Chemistry of Solids, 56, 1,9-14, 1995, Elsevier
- 8. Schur DV, Lavrenko VA, Adejev VM, Kirjakova IE; Studies of the hydride formation mechanism in metals, International journal of hydrogen energy, 19,3,265-268,1994, Elsevier
- Schur DV, Matysina ZA, Zaginaichenko S Yu; Theoretical study of interstitial atoms distribution in the bulk and at the surface of crystal. Surface

- segregation, Journal of alloys and compounds, 330, 81-84, 2002, Elsevier
- 10. Shul'ga Yu M, Martynenko VM, Tarasov BP, Fokin VN, Rubtsov VI, Shul'ga N Yu, Krasochka GA, Chapysheva NV, Shevchenko VV, Schur DV; On the thermal decomposition of the C60D19 deuterium fullerite, Physics of the Solid State, 44, 3,545-547, 2002, Nauka/Interperiodica
- 11. Schur DV, Matysina ZA, Zaginaichenko S Yu; Study of physico-chemical processes on catalyst in the course of synthesis of carbon nanomaterials, Hydrogen Materials Science and Chemistry of Metal Hydrides: Proceedings of the NATO Advanced Research Workshop on. Alushta Crimea, Ukraine, 16-22 September 2001,235,2002, Kluwer Academic Pub
- 12. Schur DV, Tarasov BP, Shul'ga Yu M, Zaginaichenko S Yu, Matysina ZA; Research of Fullerites Hydrogen Capacity, Hydrogen Materials Science and Chemistry of Metal Hydrides: Proceedings of the NATO Advanced Research Workshop on. Alushta Crimea, Ukraine, 16-22 September 2001, 1,2002, Kluwer Academic Pub
- 13. Matysina ZA, Zaginaichenko S Yu, Schur DV, Pishuk VK; Theoretical investigation of isopleths of hydrogen solubility in transition metals, Journal of alloys and compounds, 330,85-88,2002, Elsevier
- 14. Trefîlov VI, Schur DV, Pishuk VK, Zaginaichenko S Yu, Choba AV, Nagornaya NR; The solar

- furnaces for scientific and technological investigation, Renewable energy, 16,1,757-760, 1999, Elsevier
- 15. Трефилов ВИ, Щур ДВ, Загинайченко СЮ; Фуллерены-основа материалов будущего, 2001, Laboratory 67
- 16. Schur Dmitry V, Zaginaichenko Svetlana Yu, Veziroğlu T Nejat, Javadov NF; The Peculiarities of Hydrogenation of Fullerene Molecules C60 and Their Transformation, Black Sea Energy Resource Development and Hydrogen Energy Problems,191-204,2013, Springer Netherlands
- 17. Schur DV, Dubovoi AG, Anikina NS, Zaginaichenko S Yu, Dobrovol'skij VD, Pishuk VK, Tarasov BP, Shul'ga Yu M, Meleshevich KA, Pomytkin AP; The production of utrafine powders of fullerites by the salting out method, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Alushta-Cremia-Ukraine, September, 16-22, 2001,
- 18. Kharlamov AI, Loytchenko SV, Kirillova NV, Kaverina SN, Vasilev AD, Fomenko VV, Zolotarenko AD, Kazimirov VP; Tubular and filamentous nanostructures of hexagonal silicon carbide, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, 572-574,2001.
- Slys IG, Berezanskaya VI, Schur DV, Zaginaychenko SYu, Rogozinskaya AA, Adejev VM, Zolotarenko AD; Making the point metal coatings on the particles of hydride-forming

- intermetallides, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine,404-405,2001,
- Muratov VB, Meleshevich KA, Bolgar AS, Zolotarenko AD; Application of dynamic ccalorimetry method for investigation of enthalpy at hydride dissociation, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, 342-343, 2001,
- Anikina NS, Schur DV, Simanovskiy AP, Zolotarenko AD, Dubovoy AG, Ivanchenko NV; Problem on fullerene production by electric arc method, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine,590-591, 2001.
- 22. Pishuk VK, Schur DV, Bogolepov VA, Savenko AF, Zaginaichenko SYu, Zolotarenko AD, Mar'yanchuk IV, Prikhod'ko AB; Problem on production of highly dispersed extra pure powders, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine,586-587,2001,
- 23. Lavriv LV, Anikina NS, Simanovskij AP, Zolotarenko AD, Schur DV; Features of fullerene extraction wth toluene, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine,596,2001