EVALUATION OF EXTINCTION COEFFICIENTS OF C₆₀ and C₇₀ SOLUTIONS USING PC

Maystrenko M.I.*, Anikina N.S., Zolotarenko A.D., Lysenko E.A., Sivak G.A., Schur D.V.

Institute for Problems of Materials Science of NAS of Ukraine, lab. # 67, 3, Krzhizhanovsky str., Kiev, 03142 Ukraine

Introduction

At present arc synthesis of fullerenes is the most accessible and wide-spread method for production of fullerene-containing soot. Percentage of fulerenes in the soot ranges from 6 to 42 wt.%. The fullerene yield strongly depends on many technological parameters: chemical purity of graphite sputtered, its form, geometric dimensions of graphite cores. It is necessary to check the effect that the change of any parameter of synthesis exerts.

Therefore, fullerene percentage in the soot sample is determined. Spectrophotometric analysis is often used for this purpose. The method involves mathematical apparatus wich requires much time for calculations, tables and plots.

We have designed and proposed the computer program to simplify processing spectrophotometric data. This program allows calculation of C_{60} and C_{70} concentrations for short time using values of optical densities and molar extinction coefficients.

Results and discussion

Using the program designed, the required individual C_{60} and C_{70} concentrations in the solutions of their mixture are determined by solving the system of linear equations:

$$\begin{cases} A_1 = \varepsilon_{60}^1 \cdot X + \varepsilon_{70}^1 \cdot Y \\ A_2 = \varepsilon_{60}^2 \cdot X + \varepsilon_{70}^2 \cdot Y \end{cases}$$
 (1)

where A_1 and A_2 - optical densities of the solution studied for λ_1 and λ_2 waves, respectively;

 ϵ_{60}^1 and ϵ_{60}^2 - molar extinction coefficients of C_{60} solution:

 ϵ_{70}^1 и ϵ_{70}^2 - molar extinction coefficients of C_{70} solution for λ_1 and λ_2 wave lengths, respectively;

X and Y - mole C_{60} and C_{70} concentrations in the solution studied.

From the theoretical and practical viewpoints, ratio of C_{60} and C_{70} concentrations in the fullerenecontaining soot is of great importance. In the work presented the ratio is determined by the equation:

$$\frac{X}{Y} = \frac{\varepsilon_{70}^2 - \varepsilon_{70}^1}{\varepsilon_{60}^1 - \varepsilon_{60}^2},$$
 (2)

attained by solving system (1) in the case when $A_1=A_2$. The exact values of molar extinction coefficients for C_{60} and C_{70} solutions are important to diminish the error made in qualitative analysis of fullerene solutions.

The literature data on molar extinction coefficients are ambiguous [1-23]. In the work presented the molar extinction coefficients have been determined using plots $I_{pb} = f(lg\ C)$ (Ringbom curve) [4], where I_{pb} intensity of the beam passed (in %), C - molar concentration of C_{60} or C_{70} . Ringbom curves obtained experimentally for C_{70} toluene solutions are given in Fig.1.

Fig.1 shows plots for λ =407 nm (1) and λ =472.8 (2). As seen in Fig.1, the C_{70} concentration range " δ_1 " and " δ_2 " corresponds to the optical density equals 0.4343 relative units [4] what resulted from the error made in measurements of optical density of C_{70} solutions. Therefore, the values of molar extinction coefficients, obtained graphically, have been checked by the method of mathematical approximations using the computer program designed by authors.

Conclusions

The designed computer program allows acceleration of processing experimental results in several times and revealing promising directions for investigations.

References

- Schur DV, Dubovoi AG, Anikina NS, Zaginaichenko S Yu, Dobrovol'skij VD, Pishuk VK, Tarasov BP, Shul'ga Yu M, Meleshevich KA, Pomytkin AP; The production of utrafine powders of fullerites by the salting out method, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Alushta-Cremia-Ukraine, September, 16-22, 2001,
- Kharlamov AI, Loytchenko SV, Kirillova NV, Kaverina SN, Vasilev AD, Fomenko VV, Zolotarenko AD, Kazimirov VP; Tubular and filamentous nanostructures of hexagonal silicon carbide, Proceedings of VII International Conference "Hydrogen Material Science and

* Fax: (+38) 044-424-0381 E-mail: shurzag@materials.kiev.ua

-

- Chemistry of Metal Hydrides", Ukraine, 572-574,2001,
- Slys IG, Berezanskaya VI, Schur DV, Zaginaychenko SYu, Rogozinskaya AA, Adejev VM, Zolotarenko AD; Making the point metal coatings on the particles of hydride-forming intermetallides, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine,404-405,2001,
- 4. Matysina ZA, Schur DV; Hydrogen and solid phase transformations in metals, alloys and fullerites, Dnepropetrovsk: Nauka i obrazovanie, 420p (in Russian),2002,
- 5. Matysina ZA, Pogorelova OS, Zaginaichenko S Yu, Schur DV; The surface energy of crystalline CuZn and FeAl alloys, Journal of Physics and Chemistry of Solids, 56, 1,9-14, 1995, Elsevier
- Schur DV, Lavrenko VA, Adejev VM, Kirjakova IE; Studies of the hydride formation mechanism in metals, International journal of hydrogen energy, 19,3,265-268,1994, Elsevier
- 7. Schur DV, Matysina ZA, Zaginaichenko S Yu; Theoretical study of interstitial atoms distribution in the bulk and at the surface of crystal. Surface segregation, Journal of alloys and compounds, 330,81-84,2002, Elsevier
- 8. Shul'ga Yu M, Martynenko VM, Tarasov BP, Fokin VN, Rubtsov VI, Shul'ga N Yu, Krasochka GA, Chapysheva NV, Shevchenko VV, Schur DV; On the thermal decomposition of the C60D19 deuterium fullerite, Physics of the Solid State, 44, 3,545-547, 2002, Nauka/Interperiodica
- Schur DV, Matysina ZA, Zaginaichenko S Yu; Study of physico-chemical processes on catalyst in the course of synthesis of carbon nanomaterials, Hydrogen Materials Science and Chemistry of Metal Hydrides: Proceedings of the NATO Advanced Research Workshop on. Alushta Crimea, Ukraine, 16-22 September 2001,235,2002, Kluwer Academic Pub
- Tarasov BP, Shul'ga Yu M, Fokin VN, Vasilets VN, Shul'ga N Yu, Schur DV, Yartys VA; Deuterofullerene C 60 D 24 studied by XRD, IR and XPS, Journal of alloys and compounds, 314,1,296-300,2001, Elsevier
- 11. Tarasov BP, Fokin VN, Moravsky AP, Shul'ga Yu M, Yartys VA, Schur DV; Promotion of fullerene hydride synthesis by intermetallic compounds, Hydrogen energy progress, 2, 1221-1230,1998,
- 12. Schur DV, Zaginaichenko S Yu, Matysina ZA, Smityukh I, Pishuk VK; Hydrogen in lanthannickel storage alloys, Journal of alloys and compounds, 330,70-75,2002, Elsevier
- 13. Schur DV, Tarasov BP, Shul'ga Yu M, Zaginaichenko S Yu, Matysina ZA; Research of Fullerites Hydrogen Capacity, Hydrogen Materials Science and Chemistry of Metal Hydrides: Proceedings of the NATO Advanced Research

- Workshop on. Alushta Crimea, Ukraine, 16-22 September 2001,1,2002, Kluwer Academic Pub
- 14. Matysina ZA, Zaginaichenko S Yu, Schur DV, Pishuk VK; Theoretical investigation of isopleths of hydrogen solubility in transition metals, Journal of alloys and compounds, 330,85-88,2002, Elsevier
- Trefilov VI, Schur DV, Pishuk VK, Zaginaichenko S Yu, Choba AV, Nagornaya NR; The solar furnaces for scientific and technological investigation, Renewable energy, 16,1,757-760, 1999, Elsevier
- 16. Трефилов ВИ, Щур ДВ, Загинайченко СЮ; Фуллерены-основа материалов будущего, 2001, Laboratory 67
- Schur Dmitry V, Zaginaichenko Svetlana Yu, Veziroğlu T Nejat, Javadov NF; The Peculiarities of Hydrogenation of Fullerene Molecules C60 and Their Transformation, Black Sea Energy Resource Development and Hydrogen Energy Problems, 191-204, 2013, Springer Netherlands
- Muratov VB, Meleshevich KA, Bolgar AS, Zolotarenko AD; Application of dynamic ccalorimetry method for investigation of enthalpy at hydride dissociation, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, 342-343, 2001,
- Anikina NS, Schur DV, Simanovskiy AP, Zolotarenko AD, Dubovoy AG, Ivanchenko NV; Problem on fullerene production by electric arc method, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine,590-591, 2001.
- 20. Pishuk VK, Schur DV, Bogolepov VA, Savenko AF, Zaginaichenko SYu, Zolotarenko AD, Mar'yanchuk IV, Prikhod'ko AB; Problem on production of highly dispersed extra pure powders, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine, 586-587, 2001,
- Lavriv LV, Anikina NS, Simanovskij AP, Zolotarenko AD, Schur DV; Features of fullerene extraction wth toluene, Proceedings of VII International Conference "Hydrogen Material Science and Chemistry of Metal Hydrides", Ukraine,596,2001
- 22. Schur DV, Zaginaichenko S Yu, Adejev VM, Voitovich VB, Lyashenko AA, Trefilov VI; Phase transformations in titanium hydrides, International journal of hydrogen energy, 21,11,1121-1124,1996, Pergamon
- 23. Schur DV, Tarasov BP, Zaginaichenko S Yu, Pishuk VK, Veziroglu TN, Shul'ga Yu M, Dubovoi AG, Anikina NS, Pomytkin AP, Zolotarenko AD; The prospects for using of carbon nanomaterials as hydrogen storage systems, International journal of hydrogen energy, 27, 10, 1063-1069, 2002, Pergamon

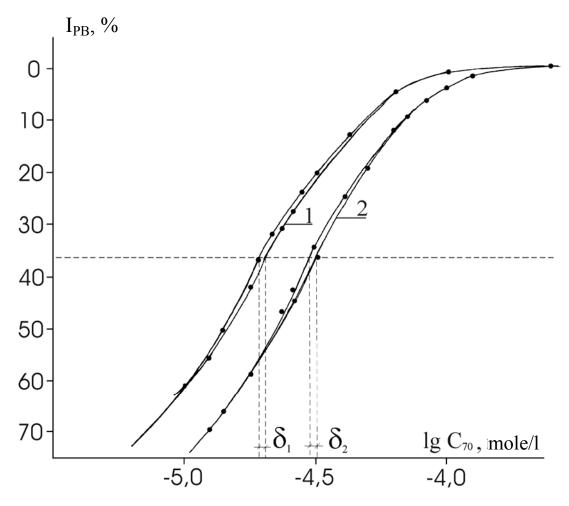


Fig.1. Intensity of the beam passed I_{pb} (in %) vs. logarithm of mole concentration for C_{70} toluene solution for wave lengths: 1 - 407 hn, 2 - 472.8 nm; δ_1 and δ_2 - concentration ranges which used to calculate mole extinction coefficients for λ =407 nm (1) and λ =472.8 (2), respectively.